

INTERPRETAÇÃO DA GASOMETRIA ARTERIAL

FERNANDES, Enderson; FERREIRA, Ingridy Maria Oliveira; GONÇALVES, Aline Belle Moraes.

Orientadores: Dra. Arissane de Sousa Falção e Dra. Carla Lopes Teixeira Gomes

Filiação: Faculdade de Medicina de Açailândia - FAMEAC IDOMED

Ligas: Liga Acadêmica de Medicina e Saúde da Família (LAMEF) e Liga Acadêmica de Urgência e Emergência (LAUEM)

Palavras-chave: Gasometria; Sangue; Gases.

1. Introdução

1.1 Gasometria: O Que É e Como É Feita?

A gasometria é um exame de sangue que analisa os gases presentes; a distribuição desses gases; o pH e o equilíbrio ácido-base no sangue. Para realizá-lo, é feita a coleta de sangue arterial e utilizado um aparelho chamado gasômetro, que mede o pH e os gases sanguíneos, como a pressão parcial do oxigênio e do gás carbônico.

Tabela 85.1 Principais parâmetros observados na gasometria

PARÂMETRO	DISCRIMINAÇÃO	VALORES DE REFERÊNCIA
рН	Concentração de H [⁺] em no sangue	7,35 a 7,45
pCO ₂	Pressão parcial de CO ₂ no sangue, em mmHg. Correlaciona-se diretamente com a ventilação alveolar	35 a 45 mmHg
HCO ₃	O bicarbonato é o principal tampão do nosso organismo	22 – 26 mEq/L
pO2	Pressão parcial de O ₂ no sangue, em mmHg	> 80mmHg
Base Excess	Um base excess muito negativo representa uma sobrecarga de ácidos. Por outro lado, um base excess muito positivo reflete a presença, como o próprio nome sugere, de excesso de bases	

Além desses parâmetros, outros elementos, como sódio, cálcio iônico, potássio e cloreto, podem ser observados. Quando esses eletrólitos estão fora das taxas adequadas, chamamos de distúrbio hidroeletrolítico.

1.2 Conceitos Importantes

Para entender os distúrbios acidobásicos é essencial se apropriar de alguns conceitos fundamentais:

GUIA PRÁTICO CLÍNICA MÉDICA

Tabela 85.2 Conceitos fundamentais sobre o equilíbrio acidobásico

CONCEITOS FUNDAMENTAIS SOBRE O EQUILÍBRIO ACIDOBÁSICO			
Acidemia	Acúmulo excessivo de íons de hidrogênio (H ⁺) fora das células. Laboratorialmente, quando o pH < 7,35		
Alcalemia	Diminuição de íons de hidrogênio (H [⁺]) fora das células. Laboratorialmente, quando o pH > 7,45		
Acidose	Processo metabólico, caracterizado pela diminuição dos níveis de HCO ₃ - ou um processo respiratório, que resulta não aumento do pCO ₂		
Alcalose	Processo metabólico, caracterizado pelo aumento dos níveis de HCO ₃ - ou um processo respiratório, que resulta na redução do pCO ₂		

Sempre que ocorrer uma diminuição do pH sanguíneo (acidemia) é necessário que haja um distúrbio ácido (acidose) que pode ser metabólica ou respiratória. Da mesma forma, quando ocorre um aumento do pH sanguíneo (alcalemia) é indicativo da presença de um distúrbio alcalótico, que também pode ser metabólico ou respiratório.

No entanto, o oposto não é necessariamente verdadeiro. Em alguns casos, uma análise dos gases sanguíneos pode mostrar um distúrbio misto que contraria essa relação, resultando em um pH dentro da faixa normal.

2. Classificação dos Distúrbios Acidobásicos

Os distúrbios acidobásicos são classificados em três tipos:

- Primários quando o seu surgimento leva à alteração inicial do pH
- **Secundários** quando a alteração do HCO₃ ou do pCO₂ ocorre de forma secundária compensar a fim de diminuir as alterações do pH
- Mistos quando existe uma associação de distúrbios primários

Quanto a sua natureza, os distúrbios podem ser nomeados em:

- Acidose metabólica
- Acidose respiratória
- Alcalose metabólica
- Alcalose respiratória

2.1 Por que Ocorrem Esses Distúrbios?

No plasma sanguíneo, o sistema tampão bicarbonato - CO₂ é responsável por regular o pH e evitar grandes variações. O pH é a relação entre o bicarbonato e o dióxido de carbono. Quando o bicarbonato aumenta, o pH também aumenta, tornando o meio mais básico. Por outro lado, quando a pressão parcial do gás carbônico aumenta, o pH diminui, tornando o meio mais ácido. Isso afeta diretamente o equilíbrio químico.

GUIA PRÁTICO CLÍNICA MÉDICA

O equilíbrio químico é influenciado pelas funções metabólicas (exercidas pelos rins) e pela função respiratória (exercida pelos pulmões). Se um lado está alterado, o outro também será afetado. Por exemplo, a compensação respiratória de um distúrbio metabólico é imediata e leva à hipoventilação ou hiperventilação. Já a compensação metabólica de um distúrbio respiratório pode levar até três dias para ocorrer.

3. RESPOSTA COMPENSATÓRIA OU SECUNDÁRIA

Uma resposta secundária é uma tentativa dos rins ou dos pulmões de corrigir um desequilíbrio no pH para que as células funcionem corretamente. Sempre que ocorre um problema no equilíbrio ácido-base, uma resposta secundária é ativada em diferentes graus de intensidade. Se o desequilíbrio é metabólico, os pulmões iniciam uma resposta respiratória. Por outro lado, se o desequilíbrio é respiratório, os rins iniciam uma resposta metabólica.

É importante lembrar que as respostas respiratórias são rápidas e quase imediatas. Já as respostas metabólicas são mais lentas e levam cerca de 3 a 5 dias para atingirem o máximo de correção.

4. EQUAÇÃO DE HENDERSON-HASSELBALCH

É possível compreender a dependência do pH por meio da equação de Henderson-Hasselbalch, aplicada à fisiologia humana. Essa equação é utilizada para prever variações no pH à medida que as concentrações de HCO₃ ou CO₂ são alteradas.

Em outras palavras a Equação de Henderson-Hasselbalch representa a relação entre o pH e as concentrações de Co_2 e o bicarbonato:

$$pH = 6.1 + (HCO_3^-) / (0.03 \times pCO^2)$$

Quando o bicarbonato diminui, o corpo naturalmente reduz a pCO2 para evitar que o pH caia muito. Isso também acontece quando há mudanças nos níveis de pCO2 e/ou bicarbonato, tanto para aumento quanto para queda.

A resposta secundária ajusta a pCO2 ou o bicarbonato na mesma direção em que ocorreu a alteração do distúrbio primário.

Tabela 85.3 Direção	das respostas secundárias
---------------------	---------------------------

DISTÚRBIO PRIMÁRIO	EVENTO PRIMÁRIO	РН	DIREÇÃO DA RESPOTA
Acidose Metabólica	↓ HCO₃⁻	↓	↓ pCO ₂
Alcalose Metabólica	↑ HCO ₃ -	↑	↑ pCO ₂
Acidose Respiratória	↑ pCO ₂	\	↑ HCO ₃ -
Alcalose Respiratória	\downarrow pCO $_2$	↑	↓ HCO ₃ -

Acidose Respiratória Aguda: $\Delta \uparrow 10$ mmHg na pCO₂= $\Delta \uparrow 1$ mEq/L HCO₃⁻ Acidose Respiratória Crônica: $\Delta \uparrow 10$ mmHg na pCO₂= $\Delta \uparrow 4$ mEq/L HCO₃⁻

5. ACIDEMIA EM 4 PASSOS

5.1 Primeiro Passo: Verifique o pH

Para identificar uma acidemia, verifique sempre o valor do pH na análise dos gases sanguíneos. Ele deve estar abaixo de 7,35.

5.2 Segundo Passo: Encontrar o Distúrbio Primário

Uma acidemia ocorre apenas quando há uma acidose presente, seja ela respiratória ou metabólica.

Após confirmar um pH inferior a 7,35, verifique se o bicarbonato está abaixo de 22mEq/L (acidose metabólica) ou se a pCO₂ está acima de 45mmHg (acidose respiratória).

Se houver tanto uma redução no bicarbonato quanto um aumento na pCO2, o diagnóstico de acidose mista pode ser feito.

5.3 Terceiro Passo: Avaliar Se Existe Resposta Compensatória

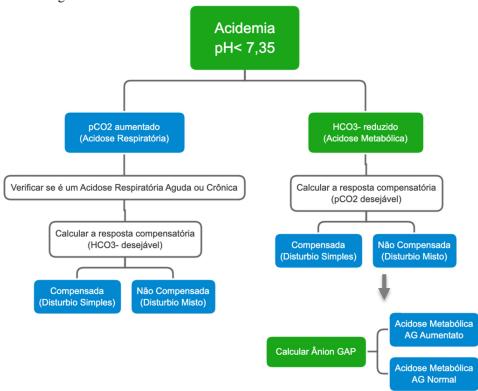
Na acidose metabólica, espera-se uma resposta compensatória em que ocorra um aumento da ventilação nos alvéolos dos pulmões, na tentativa de eliminar o dióxido de carbono (CO₂) e diminuir a queda do pH. Essa resposta pode ser avaliada matematicamente pelo cálculo do valor desejável da pressão parcial de CO₂ (pCO₂).

Para isso, deve-se utilizar a fórmula de Winter:

$$pCO_2$$
 desejável = $[(1,5 \times HCO_3^-) + 8] \pm 2mmHg$

Nas acidoses respiratórias, o corpo responde aumentando a reabsorção de bicarbonato no túbulo proximal dos rins. Portanto, é necessário calcular o valor desejável de bicarbonato para a variação específica de pCO2. Além disso, é importante identificar se a alteração respiratória é aguda ou crônica, uma vez que a compensação renal (retenção de bicarbonato) leva cerca de 3 a 5 dias para ocorrer.

Acidose respiratória aguda: $\Delta \uparrow 10$ mmHg na pCO₂ = $\Delta \uparrow 1$ mEq/L HCO₃ Acidose respiratória crônica: $\Delta \uparrow 10$ mmHg na pCO₂ = $\Delta \uparrow 4$ mEq/L HCO₃



5.4 Quarto Passo: Calcular o Ânion Gap Sérico

O ânion gap (AG) desempenha um papel importante na diferenciação das acidoses metabólicas em dois grupos principais: acidose metabólica com ânion gap aumentado e acidose metabólica com ânion gap normal ou hiperclorêmica.

De forma didática segue fluxo abaixo:

Figura 85.1 Fluxograma - Os 4 Passos da Alcidemia

6. ALCALEMIA EM 4 PASSOS

6.1 Primeiro Passo: Verifique o pH

No caso de pacientes com alcalose, o pH medido na análise dos gases sanguíneos será maior que 7,45.

6.2 Segundo Passo: Encontrar o Distúrbio Primário

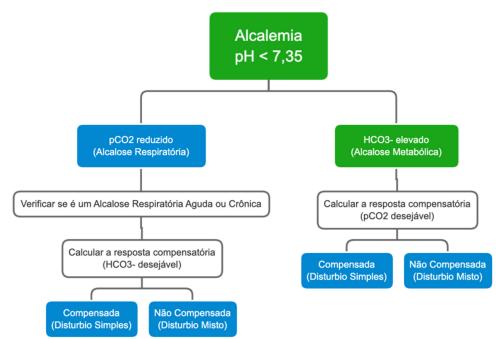
A alcalemia ocorre devido à presença de uma alcalose, que pode ser metabólica ou respiratória. Para identificar a alcalose em uma análise dos gases sanguíneos, procure

GUIA PRÁTICO CLÍNICA MÉDICA

um valor de bicarbonato maior que 26mEq/L (alcalose metabólica) ou uma pCO₂ menor que 35mmHg (alcalose respiratória).

6.3 Terceiro Passo: Avaliar Se Existe Resposta Compensatória

Quando ocorre uma alcalose metabólica, os pulmões respondem compensatoriamente reduzindo a frequência respiratória. Isso é feito para reter o CO_2 e evitar um aumento repentino do pH.

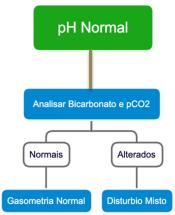

pCO₂ esperada na alcalose metabólica = HCO₃ + 15

Quando ocorre uma alcalose respiratória, é importante identificar se o distúrbio é agudo ou crônico. Nos casos de alcalose respiratória, os rins respondem compensatoriamente reduzindo a reabsorção de bicarbonato no túbulo proximal, promovendo a eliminação do bicarbonato na urina. É importante destacar que, em casos agudos, a variação esperada no bicarbonato é menor em comparação com casos crônicos.

Alcalose Respiratória Aguda: $\Delta \downarrow 10$ mmHg na pCO₂= $\Delta \downarrow 2$ mEq/L HCO₃-Alcalose Respiratória Crônica: $\Delta \downarrow 10$ mmHg na pCO₂= $\Delta \downarrow 5$ mEq/L HCO₃-

De forma didática segue fluxo abaixo:

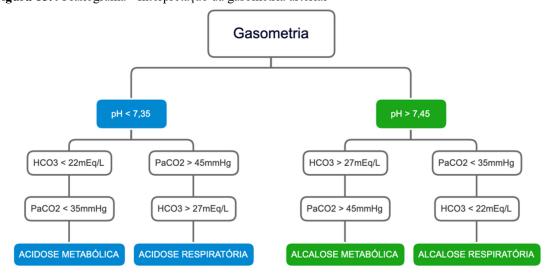
Figura 85.2 Fluxograma - Os 4 Passos da Alcalemia


7. GASOMETRIA ARTERIAL COM PH NORMAL

Ao analisar um exame de gases sanguíneos com pH dentro da faixa normal, é importante considerar duas possibilidades (conforme Figura 85.3, abaixo).

Na primeira situação, se os níveis de pCO₂ e HCO₃ estiverem dentro dos valores normais, significa que o exame está dentro dos padrões esperados.

A segunda possibilidade é mais desafiadora, pois pode indicar um distúrbio misto. Nesse caso, é necessário verificar se tanto os valores de pCO₂ quanto os de HCO₃ estão aumentados ou reduzidos. Essa combinação indica a presença de um distúrbio misto.


Figura 85.3 Fluxograma - Gasometria arterial com pH normal

8. Interpretação da Gasometria Arterial

De forma geral, a interpretação da gasometria arterial segue da forma representada abaixo:

Figura 85.4 Fluxograma - Interpretação da gasometria arterial

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. ADROGUÉ, HJ; MADIAS, NE. Secondary responses to altered acid-base status: the rules of engagement. J Am Soc Nephrol 2010; 21:920.
- 2. BEREND, Kenrick. "Diagnostic use of base excess in acid-base disorders." New England Journal of Medicine 378.15 (2018): 1419-1428.
- 3. EMMETT, Michael. "Metabolic Alkalosis: A Brief Pathophysiologic Review." Clinical Journal of the American Society of Nephrology 15.12 (2020): 1848-1856.
- 4. FEEHALLY, J., FLOEGE, J., TONELLI, M. and JOHNSON, R., 2019. Comprehensive Clinical Nephrology.
- 5. JUNG, Boris, *et al.* "Diagnosis and management of metabolic acidosis: guidelines from a French expert panel." Annals of intensive care 9.1 (2019): 1-17.
- 6. MALATESHA G, SINGH NK, BHARIJA A, et al. Comparison of arterial and venous pH, bicarbonate, pCO₂ and PO₂ in initial emergency department assessment. Emerg Med J 2007; 24:569.
- 7. MOURA, L. R. R.; ALVES, M. A. R.; SANTOS, D. R.; PECOITS FILHO, R. Tratado de Nefrologia 2018
- 8. RIELLA, Miguel Carlos. "Princípios de nefrologia e distúrbios hidroeletrolíticos." Princípios de nefrologia e distúrbios hidroeletrolíticos. 2018.